
COP 4710: Database Systems (Chapter 5) Page 1 Dr. Mark Llewellyn ©

COP 4710: Database Systems

Fall 2013

Chapter 5 – Introduction To SQL – Part 2

Department Of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop4710/fall2013

COP 4710: Database Systems (Chapter 5) Page 2 Dr. Mark Llewellyn ©

SQL Join Operators

• In the first part of the SQL notes, we covered the major DDL

and DML commands available in ANSI-standard SQL.

• In this section of notes, we’ll focus only on the SELECT

command and in particular its use and forms when multiple

tables are involved in the query.

• There are many different ways to join tables together in SQL

and this set of notes will examine all of them.

• We’ll again use the sample database shown on the next page for

the examples in this set of notes.

COP 4710: Database Systems (Chapter 5) Page 3 Dr. Mark Llewellyn ©

The ERD for the database used in the

examples in the following slides

COP 4710: Database Systems (Chapter 5) Page 4 Dr. Mark Llewellyn ©

SQL Join Operators

• The simplest technique for joining tables in SQL is to simply list

the tables in the FROM clause of a SELECT command. The

table names are separated by commas.

• There is no theoretical limit to the number of tables that can be

joined in this fashion.

• Simply listing the tables in the FROM clause will cause SQL to

form the Cartesian product of all the tables listed in the FROM

clause.

• The following slide illustrates this technique of joining the

VENDOR table with the PRODUCT table. Note that the current

instance of the VENDOR table contains 11 rows, and the current

instance of the PRODUCT table contains 16 rows, so the

resulting Cartesian product will contain 11× 16 = 176 rows.

COP 4710: Database Systems (Chapter 5) Page 5 Dr. Mark Llewellyn ©

Of those

shown, only

this row

makes

sense.

Note that the “,” (comma) operator

is a generic join operator in SQL.

Without an explicit WHERE clause

that limits its effect, it behaves like

a Cartesian product.

Cartesian product of the

PRODUCT and

VENDOR tables

COP 4710: Database Systems (Chapter 5) Page 6 Dr. Mark Llewellyn ©

SQL Join Operators

• Using the Cartesian product type of join operation is often not

the effect that you want to achieve, as this introduces many rows

of unrelated data. Recall the problems we had when using this

operator in relational algebra.

• In order to accomplish the effect of a natural join operation,

explicit join conditions must be added to the WHERE clause of

the SELECT command where equality is established across the

foreign and primary keys of the joined tables.

• Returning to the previous example, in order to achieve the effect

of a natural join, we need to ensure that the PRODUCT.v_code

= VENDOR.v_code in every row of the joined tables. The next

slide illustrates this case.

COP 4710: Database Systems (Chapter 5) Page 7 Dr. Mark Llewellyn ©

All vendor

codes match

in each row.

Note that the WHERE condition

contains the join condition that the

foreign key v_code in PRODUCT

matches the primary key v_code in

the VENDOR table.

Natural Join of the

PRODUCT and

VENDOR tables

COP 4710: Database Systems (Chapter 5) Page 8 Dr. Mark Llewellyn ©

Since the v_code attribute

appears in both tables,

there is an ambiguity that

results if only the attribute

name is used in an

expression.

MySQL error

indicated by the

missing table name

that created the

ambiguity.

COP 4710: Database Systems (Chapter 5) Page 9 Dr. Mark Llewellyn ©

Query: List details of the products along

with the v_code and v_name of the vendor

who supplies that product. Order the results

in ascending order of price.

Natural Join of the

PRODUCT and

VENDOR tables with

ordering of the results

COP 4710: Database Systems (Chapter 5) Page 10 Dr. Mark Llewellyn ©

SQL Join Operators

• When using the Cartesian product type of join operation to effect

a natural join operation, there will always need to be a join

condition in the WHERE clause.

• In general, since there can be n tables listed in the FROM clause,

there will be n-1 join conditions in the WHERE clause if a

natural join is the effect that is desired.

• The example on the following page illustrates answering the

query: List the customer last name, invoice number, invoice

date, and product description for all invoices for customer

number 10014 and order the results in increasing order of

invoice number.

COP 4710: Database Systems (Chapter 5) Page 11 Dr. Mark Llewellyn ©

Query: See previous page for the query

description.

Natural Join of the

PRODUCT, INVOICE,

LINE and CUSTOMER

tables

COP 4710: Database Systems (Chapter 5) Page 12 Dr. Mark Llewellyn ©

Query: Same query as previous page.

Natural Join of the

PRODUCT, INVOICE,

LINE and CUSTOMER

tables using table

aliases.

COP 4710: Database Systems (Chapter 5) Page 13 Dr. Mark Llewellyn ©

Query: Same query as previous page.

Natural Join of the

PRODUCT, INVOICE,

LINE and CUSTOMER

tables using table

aliases.

The keyword AS is

optional when

defining table

aliases or column

aliases in MySQL.

Many SQL

environments

require it in both

places, so I’ll

generally put it in.

COP 4710: Database Systems (Chapter 5) Page 14 Dr. Mark Llewellyn ©

ERROR….ERROR…ERROR…ERROR…

Natural Join of the

PRODUCT, INVOICE,

LINE and CUSTOMER

tables using table

aliases.

Question: Why

does this SELECT

command

generate this

error?

Answer: Since the FROM clause is

processed before the SELECT clause

the alias is in effect and thus there is

no table named INVOICE involved in

this SELECT clause.

COP 4710: Database Systems (Chapter 5) Page 15 Dr. Mark Llewellyn ©

SQL Join Operators – Recursive Joins

• A table can be joined with itself, a recursive join, and aliases are

particularly useful in this case.

• Without an alias being defined at the table level, even fully

qualified attribute names would still be ambiguous.

• Suppose that we would like to generate a list of employees with

their manager’s names. We need to join the EMP table with

itself. The next slide illustrates the problem and the following

slide illustrates the solution with table aliasing.

COP 4710: Database Systems (Chapter 5) Page 16 Dr. Mark Llewellyn ©

MySQL generated

error from this

SELECT

command

COP 4710: Database Systems (Chapter 5) Page 17 Dr. Mark Llewellyn ©

Table aliases

created for the

EMP table. Note

that I only actually

needed to create

one alias in this

case.

COP 4710: Database Systems (Chapter 5) Page 18 Dr. Mark Llewellyn ©

SQL Join Operations
• In general, relational join operations merge rows from two

tables and return the rows with one of the following conditions:

– Have common values in common columns (natural join).

– Meet a given join condition (theta-join, or equi-join).

– Have common values in common columns or have no matching values

(outer joins – variants are left, right, and full).

• The join syntax that we’ve seen so far is sometimes referred to

as “old-style” SQL joins.

• Join operations can be classified as inner joins and outer joins.

The inner join is the traditional join in which only rows that

meet a specified criterion are selected. An outer join returns not

only the matching rows but the rows with unmatched attribute

values for one or both tables to be joined.

• The table on the next two pages summarizes the joins in SQL.

COP 4710: Database Systems (Chapter 5) Page 19 Dr. Mark Llewellyn ©

Join

Classification

Join Type SQL Syntax Description

Cross Cross Join SELECT *

FROM T1, T2;

Returns the Cartesian

product of T1 and T2 (old

style)

SELECT *

FROM T1 CROSS JOIN T2;

Returns the Cartesian

product of T1 and T2 (new

style)

Inner Old-style

JOIN

SELECT *

FROM T1, T2

WHERE T1.C1 = T2.C1;

Returns only the rows that

meet the join condition in the

WHERE clause (old style);

only rows with matching

values are selected

NATURAL

JOIN

SELECT *

FROM T1 NATURAL JOIN T2;

Returns only the rows with

matching values in the

matching columns; the

matching columns must have

the same names and similar

data types.

JOIN

USING

SELECT *

FROM T1 JOIN T2 USING (C1);

Returns only the rows with

matching values in the

columns indicated in the

USING clause.

JOIN ON SELECT *

FROM T1 JOIN T2 ON T1.C1 = T2.C1;

Returns only the rows that

meet the join condition

specified in the ON clause.

SQL Join Expression Styles

COP 4710: Database Systems (Chapter 5) Page 20 Dr. Mark Llewellyn ©

Join

Classification

Join Type SQL Syntax Description

Outer LEFT JOIN SELECT *

FROM T1 LEFT OUTER JOIN T2

ON T1.C1 = T2.C1;

Returns rows with matching

values and includes all rows

from the left table (T1) with

unmatched values.

RIGHT

JOIN

SELECT *

FROM T1 RIGHT OUTER JOIN T2

ON T1.C1 = T2.C1;

Returns rows with matching

values and includes all rows

from the right table (T2) with

unmatched values.

FULL JOIN SELECT *

FROM T1 FULL OUTER JOIN T2

ON T1.C1 = T2. C1

Returns rows with matching

values and includes all rows

from both tables (T1 and T2)

with unmatched values.

SQL Join Expression Styles (continued)

COP 4710: Database Systems (Chapter 5) Page 21 Dr. Mark Llewellyn ©

CROSS JOIN
• A cross join performs a relational product (the Cartesian

product) of two tables.

• The syntax is:

SELECT column-list

FROM table1 CROSS JOIN table2;

• The next couple of slides provide examples of the cross join

operation in MySQL Workbench.

COP 4710: Database Systems (Chapter 5) Page 22 Dr. Mark Llewellyn ©

Cross Join of the

INVOICE and LINE

Current instance

of INVOICE has 8

rows. Current

instance of LINE

has 18 rows.

Result has 8 ×18

= 144 rows

COP 4710: Database Systems (Chapter 5) Page 23 Dr. Mark Llewellyn ©

Cross Join of the

INVOICE and LINE

Current instance

of INVOICE has 8

rows. Current

instance of LINE

has 18 rows.

Result has 8 ×18

= 144 rows

Only certain attributes

selected from the result set

COP 4710: Database Systems (Chapter 5) Page 24 Dr. Mark Llewellyn ©

NATURAL JOIN
• A cross join performs a relational product (the Cartesian

product) of two tables.

• The syntax is:

SELECT column-list

FROM table1 NATURAL JOIN table2;

• The natural join will perform the following tasks:

– Determine the common attribute(s) by looking for attributes with

common names and compatible data types.

– Select only the rows with the common values in the common attribute(s).

– If there are no common attributes, return the Cartesian product of the two

tables.

• The next couple of slides provide examples of the cross join

operation in MySQL Workbench.

COP 4710: Database Systems (Chapter 5) Page 25 Dr. Mark Llewellyn ©

Natural Join of the

CUSTOMER and

INVOICE tables.

COP 4710: Database Systems (Chapter 5) Page 26 Dr. Mark Llewellyn ©

Natural Join of the

INVOICE, LINE, and

PRODUCT tables.

A three table join

COP 4710: Database Systems (Chapter 5) Page 27 Dr. Mark Llewellyn ©

JOIN USING Clause
• A second technique for expressing a join is via the USING

clause. The query returns only the rows with matching values

in the columns indicated in the USING clause – and that column

must exist in both tables.

• The syntax is:

SELECT column-list

FROM table1 JOIN table2 USING (common-column);

• The next slide provide an example of a join operation that

includes the USING clause.

COP 4710: Database Systems (Chapter 5) Page 28 Dr. Mark Llewellyn ©

Join USING clause of

the INVOICE, LINE, and

PRODUCT tables.

A three table join with the

USING clause

COP 4710: Database Systems (Chapter 5) Page 29 Dr. Mark Llewellyn ©

JOIN ON Clause
• The natural join and join USING join styles use common

attribute names in the joining tables.

• Another way to express a join when the tables have no common

attribute names is to use the JOIN ON operator.

• The query will return only the rows that meet the indicated join

condition. The join condition will typically include an equality

comparison expression of two columns. The two columns may

or may not have the same name, but obviously must have

comparable data types. The syntax is:

SELECT column-list

FROM table1 JOIN table2 ON (join-condition);

• The next slide provide an example of a join operation that

includes the USING clause.

COP 4710: Database Systems (Chapter 5) Page 30 Dr. Mark Llewellyn ©

JOIN ON operator with a join

of the INVOICE, LINE, and

PRODUCT tables.

A three table join with the

ON operator

COP 4710: Database Systems (Chapter 5) Page 31 Dr. Mark Llewellyn ©

JOIN ON operator with a

recursive join of two tables

with join on not commonly

named attributes

Query: Generate a list of all employees

with their manager’s names.

COP 4710: Database Systems (Chapter 5) Page 32 Dr. Mark Llewellyn ©

Outer Joins
• An outer join returns not only the rows matching the join

condition (that is, rows with matching values in the common

columns), it also returns the rows with unmatched values.

• The ANSI standard defines three types of outer joins: left, right,

and full.

• The left and right designations reflect the order in which the

tables are processed by the DBMS.

• Remember that join operations take place two tables at a time.

The first table named in the FROM clause will be the left side,

and the second table named will be the right side.

• If three or more tables are being joined, the result of joining the

first two tables becomes the left side, and the third table

becomes the right side.

COP 4710: Database Systems (Chapter 5) Page 33 Dr. Mark Llewellyn ©

Left Outer Join
• The left outer join returns not only the rows matching the join

condition (rows with matching values in the common column),

it also returns rows in the left table with unmatched values in

the right side.

• The syntax is:

SELECT column-list

FROM table1 LEFT [OUTER] JOIN table2 ON join-condition;

• The next slide provide an example of a left outer join operation.

COP 4710: Database Systems (Chapter 5) Page 34 Dr. Mark Llewellyn ©

LEFT OUTER JOIN where

some of the vendors are not

supplying products.

Query: List details of product code, vendor code and

vendor name for all products and include those

vendors with no matching products.

Note the null values in the

p_code (attribute of the

right table) indicating that

there are vendors who are

currently not supplying

any products.

In other words, these are

the vendors without any

matching products.

COP 4710: Database Systems (Chapter 5) Page 35 Dr. Mark Llewellyn ©

LEFT OUTER JOIN where

some of the vendors are not

supplying products.

Query: List details of product code, vendor code and

vendor name for all products and include those

vendors with no matching products.

Illustrates that use

of keyword

OUTER is optional

COP 4710: Database Systems (Chapter 5) Page 36 Dr. Mark Llewellyn ©

Right Outer Join
• The right outer join returns not only the rows matching the join

condition (rows with matching values in the common column),

it also returns rows in the right table with unmatched values in

the left side.

• The syntax is:

SELECT column-list

FROM table1 RIGHT [OUTER] JOIN table2 ON join-condition;

• The next slide provide an example of a right outer join

operation.

COP 4710: Database Systems (Chapter 5) Page 37 Dr. Mark Llewellyn ©

RIGHT OUTER JOIN where

some of the products have

no vendors.

Query: List details of product code, vendor code and

vendor name for all products and include those

products with no matching vendors.

Notice the null

attribute values

from the VENDOR

table (the left

table) for the

products that

currently have not

vendor.

COP 4710: Database Systems (Chapter 5) Page 38 Dr. Mark Llewellyn ©

Full Outer Join
• The full outer join returns not only the rows matching the join

condition (rows with matching values in the common column),

it also returns rows in both the left and right tables with

unmatched values in either side.

• The syntax is:

SELECT column-list

FROM table1 FULL [OUTER] JOIN table2 ON join-condition;

• The next slide provide an example of a full outer join operation.

NOTE: MySQL does not support full

outer join. It can be simulated as

shown on page 40.

COP 4710: Database Systems (Chapter 5) Page 39 Dr. Mark Llewellyn ©

MySQL does not support full outer joins.

Notice the error

message from

MySQL if you

attempt a full outer

join

COP 4710: Database Systems (Chapter 5) Page 40 Dr. Mark Llewellyn ©

Full Outer Join in MySQL
• To simulate a full outer join in MySQL use the following

syntax:

SELECT column-list

FROM table1 LEFT [OUTER] JOIN table2 ON join-condition

UNION

SELECT column-list

FROM table1 RIGHT [OUTER] JOIN table2 ON join-condition;

• The next slide provide an example of a full outer join operation

in MySQL.

COP 4710: Database Systems (Chapter 5) Page 41 Dr. Mark Llewellyn ©

Notice nulls

appearing in rows

from both the left

and right tables.

Query: List details of product code, vendor code and

vendor name for all products and include both

products and vendors with no matches.

Simulation of a FULL

OUTER JOIN in MySQL

COP 4710: Database Systems (Chapter 5) Page 42 Dr. Mark Llewellyn ©

Subqueries and Correlated Subqueries

• The use of joins in a relational database allows you to get

information from two or more tables.

• However, it is often necessary to process data based on other

processed data.

• For example, suppose that you want to generate a list of vendors

who do not provide any products:

SELECT v_code, v_name

FROM vendor

WHERE v_code NOT IN (SELECT v_code

FROM product);

• In order to list the vendor information in the outer query you

needed information that was not previously known. A subquery

is used to generate the necessary information.

COP 4710: Database Systems (Chapter 5) Page 43 Dr. Mark Llewellyn ©

Subqueries and Correlated Subqueries

• The basic characteristics of subqueries are:

– A subquery is a query (SELECT statement) inside a query.

– A subquery is normally expressed inside parentheses.

– The first query in the SELECT statement is referred to as the outer query.

– The query inside the SELECT statement is referred to as the inner query.

– The inner query is executed first.

– The output of an inner query is used as the input to the outer query.

– The entire SELECT statement is referred to as a nested query.

• A subquery can actually appear in DML statements such as

INSERT, UPDATE, and DELETE. We’ll hold off looking at

these types of subqueries until later and for now focus on

subqueries inside the SELECT statement only.

COP 4710: Database Systems (Chapter 5) Page 44 Dr. Mark Llewellyn ©

WHERE Clause Subqueries

• The most common type of subquery uses an inner SELECT

subquery on the right side of a WHERE comparison expression.

• For example, to find all products with a price greater than or

equal to the average product price, you would construct the

following query expression:

SELECT p-code, p_price

FROM product

WHERE p_price >= (SELECT AVG(p_price)

FROM product);

• Note that this type of subquery, when used in a >, <. =, >=, or <=

conditional expression, requires that a subquery that returns only

one value (one column, one row). The value generated by the

subquery must be of a compatible data type.

COP 4710: Database Systems (Chapter 5) Page 45 Dr. Mark Llewellyn ©

Notice the

subquery is

contained in

parentheses.

Query: List details of products whose price is greater

than or equal to the average price of all products.

Simple subquery in a

WHERE clause

COP 4710: Database Systems (Chapter 5) Page 46 Dr. Mark Llewellyn ©

Query: List all of the customers who ordered a claw

hammer.

Subquery used in a

combination of join

operations.

Note that if the

subquery were to

encounter two or

more products

with a description

of claw hammer,

an error would be

returned.

COP 4710: Database Systems (Chapter 5) Page 47 Dr. Mark Llewellyn ©

WHERE Clause Subqueries

• In the previous example, if the subquery had found more than

one p_code corresponding to a claw hammer, the DBMS would

have generated an error due to the = condition on p_code.

• If the inner query might generate more than one value the IN

operator must be used. In this fashion the subquery is assumed

to generate a set of values and the comparison operator needs

only to check for set membership.

• The next slide illustrates this type of subquery.

COP 4710: Database Systems (Chapter 5) Page 48 Dr. Mark Llewellyn ©

Query: List all of the customers who ordered nay

type of hammer or saw.

Where subquery where the

subquery returns a set of

values.

COP 4710: Database Systems (Chapter 5) Page 49 Dr. Mark Llewellyn ©

HAVING Clause Subqueries

• Subqueries can also be included inside the HAVING clause of a

GROUP BY clause. Recall that the HAVING clause cannot

stand alone and must appear only in the presence of a GROUP B

clause.

• Recall that the HAVING clause is used to restrict the output of a

GROUP BY clause by applying conditional criteria to the

grouped rows.

• The query on the following page lists all of the products with a

total quantity sold greater than the average quantity sold.

COP 4710: Database Systems (Chapter 5) Page 50 Dr. Mark Llewellyn ©

Query: List all of the products with a total quantity

sold greater than the average quantity sold.

HAVING clause subquery

The average quantity sold in

this database is currently

2.55

COP 4710: Database Systems (Chapter 5) Page 51 Dr. Mark Llewellyn ©

Multirow Subquery Operators
• The IN subquery operator allows you to check for set inclusion,

but it uses an equality operation; that is, it selects only those

rows that are equal to at least one of the values in the set.

• What happens if you need to make an inequality comparison (<

or >) of one value to a list of values?

• SQL provides two operators for these cases: ANY and ALL.

• The use of the ALL operator allows you to compare a single

value with a list of values returned by the inner query using a

comparison operator other than equals.

• The ANY operator allows you to compare a single value to a list

of values and select only the rows for which it is greater or less

than any value in the list.

• The next couple of slides illustrate both operators.

COP 4710: Database Systems (Chapter 5) Page 52 Dr. Mark Llewellyn ©

Query: List all of the products which cost more than

all individual products provided by vendors from

Florida.

Using the ALL operator in a

subquery

Notice the double

nested subquery.

The inner most

finds all vendors in

Florida. The outer

subquery finds

total price of all

products from

Florida vendors

COP 4710: Database Systems (Chapter 5) Page 53 Dr. Mark Llewellyn ©

Query: List all of the products which cost more than

any individual products provided by vendors from

Florida.

Using the ANY operator in a

subquery

COP 4710: Database Systems (Chapter 5) Page 54 Dr. Mark Llewellyn ©

FROM Clause Subqueries
• So far we seen how the SELECT statement uses subqueries in

the WHERE, HAVING, and IN statements along with the ANY

and ALL operators for multirow subqueries. In all of those

cases, the subquery was part of a conditional expression, and it

always appeared on the right hand side of the expression.

• The FROM clause specifies the table(s) from which the data will

be drawn in a SELECT statement. Because the output of a

SELECT statement is another table (or more precisely, a

“virtual” table), you can use a SELECT subquery in the FROM

clause.

COP 4710: Database Systems (Chapter 5) Page 55 Dr. Mark Llewellyn ©

FROM Clause Subqueries
• Consider the following case:

– You want to know all the customer who have purchased products 13-

Q2/P2 and 23109-HB.

– All product purchases are stored in the LINE table, so you can determine

who purchased any product by searching the P_CODE attribute in the

LINE table.

– In this case, however, you want to know all customers who purchased

both products, not just one.

– The next page illustrates how this query can be answered using a

subquery in the FROM clause.

COP 4710: Database Systems (Chapter 5) Page 56 Dr. Mark Llewellyn ©

Query: List customer details for customers who have

purchased both product ‘13-Q2/P2’ and ‘23109-HB’.

Using a FROM clause

subquery

Note that since

the old style join

was used, explicit

join conditions are

included in the

WHERE clause.

COP 4710: Database Systems (Chapter 5) Page 57 Dr. Mark Llewellyn ©

Query: Same query as previous page.

Using a FROM clause

subquery

Note that new style natural join

was used in this case

eliminating the need for the

WHERE clause on the outer

selection. However, notice

that the “virtual” tables are

required to have aliases even

though they are not explicitly

referenced in this case.

COP 4710: Database Systems (Chapter 5) Page 58 Dr. Mark Llewellyn ©

Attribute List Subqueries
• The SELECT statement uses the attribute list to indicate what

columns to project in the resulting set.

• The columns in the attribute list can be attributes of base tables,

computed attributes, or the result of an aggregate function, as

we’ve already seen.

• The attribute list can also include a subquery expression, which

is also referred to as an inline query.

• An inline query must return one value; otherwise, an error is

generated.

• An example of a inline query is shown on the next page.

COP 4710: Database Systems (Chapter 5) Page 59 Dr. Mark Llewellyn ©

Query: For each product show the difference in its

price compared to the average price of all products.

An inline query

(A subquery in the attribute list)

This query contains two inline

subqueries plus a computed

value (difference).

COP 4710: Database Systems (Chapter 5) Page 60 Dr. Mark Llewellyn ©

Query: Same query as previous page.

An inline query

(A subquery in the attribute list)

Since the average price is an

alias defined inside the same

attribute list, it cannot be used

in this expression. Notice how

the complete expression was

used in this position on the

previous page.

COP 4710: Database Systems (Chapter 5) Page 61 Dr. Mark Llewellyn ©

Attribute List Subqueries
• One more example illustrating the use of attribute subqueries and

column aliases.

– Suppose that you want to know the product code, the total sales by

product, and contribution of each employee of each product’s sales.

– To get the sales by product, you need to use only the LINE table.

– To compute the contribution by each employee, you need to know the

number of employees (from the EMPLOYEE table). If you look at the

table schemas, you’ll notice that EMPLOYEE and LINE do not share a

common attribute. In fact, you do not need a common attribute. You only

need to know the total number of employees, no the total employees

related to each product.

– The answer to this query is shown on the next page.

COP 4710: Database Systems (Chapter 5) Page 62 Dr. Mark Llewellyn ©

Query: For each product, list the total sales and the

contribution per employee to the total sales.

An inline query

(A subquery in the attribute list)

As you can see, the number of

employees remains the same

for each row in the result set.

The use of this type of

subquery is limited to certain

instanced when you need to

include data from other tables

that are not directly related to

the main table or tables in the

query. The value will remain

the same for each row, like a

constant in a programming

language.

Note again, that you cannot

use an alias in the attribute list

to write the expression that

computes the contribution per

employee.

COP 4710: Database Systems (Chapter 5) Page 63 Dr. Mark Llewellyn ©

Query: For each product, list the total sales and the

contribution per employee to the total sales.

An alternative way to do the same

query using FROM clause

subqueries.

Every “virtual” table requires

an alias.

COP 4710: Database Systems (Chapter 5) Page 64 Dr. Mark Llewellyn ©

Correlated Subqueries
• Up to this point, every subquery that we’ve seen executed

independently. That is, each subquery in a command sequence

executed in serial fashion, one after another. Nested queries of

this type are referred to as a non-correlated query.

– The inner subquery executed first; its output was used by the outer query,

when then executes until the last outer query finishes (the first SQL

statement in the code).

• In contrast, a correlated query is a subquery that executes once

for each row in the outer query. The process is similar to a

nested loop in a programming language (see below).
for x = 1 to 2

for y = 1 to 3

print “X = “, X, “ Y = “, Y

end

end

X = 1 Y = 1

X = 1 Y = 2

X = 1 Y = 3

X = 2 Y = 1

X = 2 Y = 2

X = 2 Y = 3

A nested loop
The output

produces

COP 4710: Database Systems (Chapter 5) Page 65 Dr. Mark Llewellyn ©

Correlated Subqueries
• A correlated subquery is processed in the following fashion:

– The outer query is initiated.

– For each row of the outer query result set, the inner query is

executed by passing the outer row to the inner query.

• The process is exactly the opposite of a non-correlated query in which

the inner query is completely processed before any rows of the outer

query result set are generated.

• A correlated query is called such, because the inner query is related to

the outer query; the inner query references a column of the outer

subquery.

• The following page illustrates how a correlated query is processed.

COP 4710: Database Systems (Chapter 5) Page 66 Dr. Mark Llewellyn ©

Correlated Subqueries
• Suppose that you want to know all product sales in which the units sold value

is greater than the average units sold value for that product (as opposed to the

average for all products). In other words, for every sale of a product, you only

want to list those products where a specific sale is for more units of that

product than the average number of units sold in all sales for that product.

• To process this query you need to do the following:

– Compute the average units sold for a given product.

– Compare the average computed in step 1 to the units sold in each sale

row, and then select only those rows in which the number of units sold is

greater than that average.

• The following page illustrates the SQL correlated query expression that

correctly answers this query.

COP 4710: Database Systems (Chapter 5) Page 67 Dr. Mark Llewellyn ©

Query: For each product list the details where that

product is sold in a quantity greater than the average

number of units sold for that product.

A correlated subquery

The p_code from the outer

query is used to select the

product currently being

examined. Since line1 refers

to the table in the outer query,

this is a correlated query.

The inner query computes the average units

sold of the product that matches the p_code of

the outer query p_code. Thus, the inner query

executes once, using the first product code

found in the outer LINE table, and returns the

average number of units sold for that product.

When the number of units sold in the outer

LINE row is greater than the average

computed, the row is added to the output.

COP 4710: Database Systems (Chapter 5) Page 68 Dr. Mark Llewellyn ©

Correlated Subqueries
• To further illustrate the use of subqueries, the next example shows how

subquery results can be combined.

• How do you know that the result set in the previous query is correct? In other

words, how do you know that those products that were returned along with

the units sold were for sales that were greater than the average sold for that

produt?

• One way would be to run another query that computed the average number of

units sold for each product and then compare that result to those products in

the result set of the previous query.

• Instead of this approach, let’s take the approach of writing a single query that

produces both results for us. We’ll do this by combining an inline query that

produces the average number of units sold for the product in addition to the

original query, so we get not only our answer, but also verification.

• This is shown on the next slide.

COP 4710: Database Systems (Chapter 5) Page 69 Dr. Mark Llewellyn ©

Query: For each product list the details where that

product is sold in a quantity greater than the average

number of units sold for that product.

A correlated subquery with an

inline query

The inline query is simply

validating our results by

computing the average

number of units sold for each

product in our result set. Note

that this is the same value that

is being computed in the inner

correlated subquery.

COP 4710: Database Systems (Chapter 5) Page 70 Dr. Mark Llewellyn ©

Correlated Subqueries
• Correlated queries can also be used with the EXISTS operator.

• For example, suppose that you want to know the names of all

customers who have placed an order after January 1, 2012.

• In this case, a correlated query works quite nicely, as shown on

the next page.

COP 4710: Database Systems (Chapter 5) Page 71 Dr. Mark Llewellyn ©

Query: List the customer details for customers who

have placed an order after January 1, 2012.

A correlated subquery using the

EXISTS operator.

The correlated inner query

determines for each customer

in the customer table if there is

an invoice belonging to that

customer with an invoice date

after January 1, 2012.

COP 4710: Database Systems (Chapter 5) Page 72 Dr. Mark Llewellyn ©

Correlated Subqueries
• Another correlated query example.

• Suppose that you want to know what vendors you need to

contact to order products that are approaching the minimum

quantity on hand value. In particular, you want to know the

vendor code, vendor name, and vendor telephone number for

products with a quantity on hand that is less than double the

minimum quantity.

• The solution is shown on the next page. Note how the inner

correlated subquery runs using the first vendor. If any products

match the condition (quantity on hand is less than double the

minimum quantity), the vendor information is listed in the

output. The correlated subquery then runs the next vendor and

the process repeats until all vendors have been examined.

COP 4710: Database Systems (Chapter 5) Page 73 Dr. Mark Llewellyn ©

Query: List vendor details for the vendors that

currently have products with quantity on hand less

than twice the minimum.

A correlated subquery using the

EXISTS operator.

The correlated inner query

determines for each vendor in

the vendor table if there is a

product that they supply whose

current quantity on hand is

less than twice the minimum.

COP 4710: Database Systems (Chapter 5) Page 74 Dr. Mark Llewellyn ©

Relational Set Operations In SQL
• SQL data manipulation commands are set-oriented; they operate

over entire sets of rows and columns (tables) at once.

• ANSI standard SQL supports the UNION, INTERSECT, and

MINUS operations, which operate exactly as their relational

algebra counterparts.

• Recall that these operators require union compatible sets in order

for the operation to be defined. Some DBMSs will require

identical data types in a one to one correspondence of attributes,

while other DBMSs will simply require compatible data types in

a one to one correspondence to ensure union compatibility.

• The following pages illustrate how MySQL implements these

operations.

COP 4710: Database Systems (Chapter 5) Page 75 Dr. Mark Llewellyn ©

Relational Set Operations In SQL
• SQL data manipulation commands are set-oriented; they operate

over entire sets of rows and columns (tables) at once.

• ANSI standard SQL supports the UNION, INTERSECT, and

MINUS operations, which operate exactly as their relational

algebra counterparts.

• Recall that these operators require union compatible sets in order

for the operation to be defined. Some DBMSs will require

identical data types in a one to one correspondence of attributes,

while other DBMSs will simply require compatible data types in

a one to one correspondence to ensure union compatibility.

• The following pages illustrate how MySQL implements these

operations.

COP 4710: Database Systems (Chapter 5) Page 76 Dr. Mark Llewellyn ©

Query: List customer details for the customers who

have a balance of more than $500.00 or a $0

balance.

A query with a UNION operation.

Note the attribute listing is the

same in both result sets.

The next page illustrates what

happens if they are not the

same.

COP 4710: Database Systems (Chapter 5) Page 77 Dr. Mark Llewellyn ©

Query: Same as previous page.

A query with a UNION operation. Error

due to non-union compatibility.

Note the attribute listing is the

different (the first set does not

contain the cus_balance).

MySQL error is generated

indicating non-union

compatibility.

COP 4710: Database Systems (Chapter 5) Page 78 Dr. Mark Llewellyn ©

Relational Set Operations In SQL
• For the next couple of examples, I modified the database we’ve

been using so that the queries would make more sense.

• I created a second customer table with a schema identical to that

of the customer table but missing the customer balance.

• The next two slides illustrate the current instances of the

CUSTOMER and CUSTOMER2 tables. Note that two

customers, Olowski and Dunne appear in both tables.

COP 4710: Database Systems (Chapter 5) Page 79 Dr. Mark Llewellyn ©

The current instance of CUSTOMER

COP 4710: Database Systems (Chapter 5) Page 80 Dr. Mark Llewellyn ©

The current instance of CUSTOMER2

COP 4710: Database Systems (Chapter 5) Page 81 Dr. Mark Llewellyn ©

Query: List customer details for the customers who

appear in either the CUSTOMER or the

CUSTOMER2 table.

A query with a UNION operation.

The SQL standard states that

duplicates are to be removed

from the result of a UNION

operation. MySQL does not

adopt that standard and you

will need to explicitly remove

duplicates from a UNION.

The ANSI standard provides a

UNION ALL operation that

includes duplicate values in a

UNION operation.

COP 4710: Database Systems (Chapter 5) Page 82 Dr. Mark Llewellyn ©

Relational Set Operations In SQL
• ANSI-standard SQL provides an INTERSECT operation for

which the syntax is:

query1 INTERSECT query2;

• The result set contains the rows that appear in the result of both

query1 and query2.

• MySQL does not support the INTERSECT operator. In MySQL

the INTERSECT operation is simulated with an INNER JOIN.

• Suppose you want to see the customers who appear in both the

CUSTOMER and CUSTOMER2 tables. The query expressions

to answer this query are shown on the next page.

COP 4710: Database Systems (Chapter 5) Page 83 Dr. Mark Llewellyn ©

Relational Set Operations In SQL
• ANSI-standard SQL:

select cus_lname, cus_fname

from customer

INTERSECT

select cus_lname, cus_fname

from customer2;

• In MySQL this query would be expressed as:

select cus_lname, cus_fname

from customer INNER JOIN customer2

using (cus_lname, cus_fname);

• See next slide.

COP 4710: Database Systems (Chapter 5) Page 84 Dr. Mark Llewellyn ©

Simulating an INTERSECT operation in

MySQL with an INNER JOIN and

USING clause

Query: List customer last name and first name for

customers who appear in both the CUSTOMER or the

CUSTOMER2 table.

COP 4710: Database Systems (Chapter 5) Page 85 Dr. Mark Llewellyn ©

Simulating an INTERSECT operation in

MySQL with an INNER JOIN and

USING clause

Query: List customer codes for customers in the 615

area code who have made a purchase.

COP 4710: Database Systems (Chapter 5) Page 86 Dr. Mark Llewellyn ©

Relational Set Operations In SQL
• ANSI-standard SQL provides a MINUS operation for which the

syntax is:

query1 MINUS query2;

• The result set contains the rows that appear only in the result of

query1.

• MySQL does not support the MINUS operator. In MySQL the

MINUS operation can be simulated with two different scenarios.

These two scenarios are illustrated on the next page.

COP 4710: Database Systems (Chapter 5) Page 87 Dr. Mark Llewellyn ©

Relational Set Operations In SQL
• ANSI-standard SQL:

select cus_lname, cus_fname

from customer

MINUS

select cus_lname, cus_fname

from customer2;

• In MySQL this query could be expressed as:

select distinct cus_lname, cus_fname

from customer

where (cus_lname, cus_fname) not in

(select cus_lname, cus_fname

from customer2);

or as:
select distinct cus_lname, cus_fname

from customer left outer join customer2

using (cus_lname, cus_fname)

where customer2.lname is null;

• See next slide.

COP 4710: Database Systems (Chapter 5) Page 88 Dr. Mark Llewellyn ©

Simulating a MINUS operation in

MySQL with a nested query.

Query: List customer names for the customer who

appear only in the CUSTOMER table and not in the

CUSTOMER2 table.

Notice that the two customer

who do appear in both tables

(Olowski and Dunne) do not

appear in the results.

COP 4710: Database Systems (Chapter 5) Page 89 Dr. Mark Llewellyn ©

Simulating a MINUS operation in

MySQL with a nested query.

Query: List customer names for the customers who

appear only in the CUSTOMER2 table and not in the

CUSTOMER table.

Notice that the two customer

who do appear in both tables

(Olowski and Dunne) do not

appear in the results.

COP 4710: Database Systems (Chapter 5) Page 90 Dr. Mark Llewellyn ©

Simulating a MINUS operation in

MySQL using a LEFT OUTER JOIN

Query: List customer names for the customers who

appear only in the CUSTOMER table and not in the

CUSTOMER2 table.

Notice that the two customer

who do appear in both tables

(Olowski and Dunne) do not

appear in the results.

